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1 Introduction

Hume [Hume 1739: bk.I pt.III sec.XI] held, incredibly, that objective chance is a projection of our
beliefs. Bruno de Finetti [1970] gave mathematical substance to this idea. Scientific reasoning about
chance, he argued, should be understood as arising from symmetries in degrees of belief. De Finetti’s
gambit is popular in some quarters of statistics and philosophy – see, for example, [Bernardo and
Smith 2009], [Spiegelhalter 2024], [Skyrms 1984: ch.3], [Diaconis and Skyrms 2017: ch.7], [Jeffrey
2004]. It is safe to say, however, that it has not been widely accepted. Science textbooks generally ig-
nore it. So does the excellent Stanford Encyclopedia entry on “Interpretations of Probability” [Hájek
2023].

Part of the problem is that presentations of the gambit tend to be hard on the maths and thin on the
philosophy. In this essay, I try to explore and develop the philosophy behind the proposal, keeping
the maths at the sidelines.

As I see it, the gambit amounts to a kind of expressivism: judgements about chance express sym-
metries in our beliefs about outcomes. Unlike familiar forms of expressivism (about normativity, for
example), de Finetti’s gambit starts not with language and assertion, but with credence. The primary
target is to understand what it means to have a certain credence about chance. It turns out that this
approach avoids many of the problems that beset traditional, language-centric forms of expressivism.

2 Credence and chance

Subjective probability is fairly well understood. Beliefs obviously come in degrees, and there are
good reasons to think that rational degrees of belief satisfy the rules of probability. We don’t need to
review these reasons.

Objective chance, on the other hand, is not well understood. There is no agreement on what it
means to say that a coin has a 50% chance of landing heads, or that a radium-227 atom has a 50%
chance of decaying within 42 seconds.

It’s clear that these can’t be directly understood as concerned with belief. If we’re unsure about
chance, we’re not unsure about our beliefs, or about anyone else’s beliefs. A naive subjectivist in-
terpretation of chance would turn almost all of science into a branch of psychology (or worse, of
normative psychology, if chance is analyzed in terms of rational belief). This will not do.
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Science textbooks commonly define probability as relative frequency: “the number of favourable
cases” divided by “the number of all the cases”, as [Laplace 1814] put it. This can’t be right either.
It would make it logically impossible that a fair coin is tossed an odd number of times. Switching
to limiting relative frequencies in hypothetical trials, as some textbooks suggest, hardly make things
better. It is doubtful that there is a fact of the matter about how a coin would land if it were tossed
infinitely often, and any world where this happens would have to be quite unlike ours: why should
science be obsessed with such worlds?1

If chance can’t be defined in terms of anything else, perhaps we should take it as fundamental. On
this account, the physical universe involves a basic probabilistic quantity. Probability statements in
science are simply statements about that quantity.

This view also faces serious problems. For one thing, we find probability statements not just in
fundamental physics, but also in statistical mechanics, systems biology, population ecology, epidemi-
ology, and many other fields that are commonly agreed not to require probabilities at the level of fun-
damental physics. The chances of coin flips and dice rolls don’t seem to be physically fundamental.

Besides, how could we learn about fundamental chances? Consider what God would have to do
to create a world with fundamental chances – to pick out such a world from the set of all possible
worlds. One thing she would have to do is to settle the chances. We might imagine that she turns a
dial to settle the chance of Heads for a truly indeterministic type of coin flip. In addition, she has to
choose the outcome of every such coin flip: the first lands Heads, the second Tails, and so on. The two
choices are almost entirely independent. Unless God has set the dial to 0 or 1, she is free to choose
any outcomes she wants. After all, any combination of non-trivial chance hypotheses is compatible
with any sequence of outcomes. A coin that’s biased towards Heads can still land Tails on each trial.
(This is another reason why the relative frequency interpretation is untenable.) If we live in a world
that has been created in this manner, how could we get information about how God has set the dial?
How could it help to look at the outcomes, or to scrutinize the coins?

The severity of this problem is easy to miss because we know very well how to reason from out-
comes to chances. The details are, in fact, somewhat controversial. I will assume a broadly Bayesian
account of scientific reasoning, as defended, for example, in [Howson and Urbach 1993] and [Earman
1992]. The inference from outcomes to chances here works as follows.

We start with a prior credence over chance hypotheses. In the coin example, this might be a cre-
dence over the chance 𝜃 of Heads on individual flips. Suppose we now observe a sequence of out-
comes 𝑥1, … , 𝑥𝑛 with #ℎ Heads and #𝑡 Tails. In response, we update our credence towards 𝜃 by
Bayes’ Rule:

Cr(𝜃 ∣ 𝑥1, … , 𝑥𝑛) ∝ 𝜃#ℎ (1 − 𝜃)#𝑡 × Cr(𝜃). (BR)

The larger the observed sequence, the more this concentrates the posterior credence around chance
values near the observed frequencies.

Bayes’ Rule can be derived from Bayes’ Theorem, an independence assumption, and a version of
the Principal Principle. Bayes’ Theorem says that

Cr(𝜃 ∣ 𝑥1, … , 𝑥𝑛) ∝ Cr(𝑥1, … , 𝑥𝑛 ∣ 𝜃) × Cr(𝜃). (BT)

1 See, e.g., [Hájek 1997] and [Hájek 2009] for further arguments against frequentist interpretations.
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The independence assumption is that conditional on a particular chance value 𝜃, no outcome provides
evidence about any other outcome:

Cr(𝑥1, … , 𝑥𝑛 ∣ 𝜃) = Cr(𝑥1 ∣ 𝜃) × … × Cr(𝑥𝑛 ∣ 𝜃). (Ind)

Finally, the required version of the Principal Principle says that our credence in a Heads outcome
conditional on Heads having chance 𝜃 equals 𝜃:2

Cr(𝑥𝑖 = 𝐻 ∣ 𝜃) = 𝜃. (PP)

Bayes’ Rule is an immediate consequence of these three assumptions.
To complete the story, we need to explain what the credence function Cr is supposed to represent.

On a radical “subjectivist” interpretation, it represents the actual degrees of belief of whoever is
engaged in the reasoning. On a radical “objectivist” interpretation, Cr is a fixed confirmation measure
to which actual beliefs ought to conform. Various intermediate interpretations are possible. We don’t
need to take a stance on this issue. Let’s assume that Cr is the credence function of a rational scientist,
leaving open what exactly this demands.

I assume that the Bayesian story captures how we can reason from outcomes to chances. So how
is not really the problem. The problem is to explain why this method works. If chance is relative
frequency, for example, then Bayes’ Rule is demonstrably unsound.3 If chance is fundamental, the
rule is formally consistent. But its justification remains a mystery. Why should we be highly confident
that God has set the dial to near 1/2 just because we observe an equal number of Heads and Tails? What
do the outcomes and the dial setting have to do with one another, given that both are metaphysically
basic and (metaphysically) independent?

This is where de Finetti enters the stage. De Finetti saw that if we understand chance as a projection
from our credences then we can explain our methodological practice: we can derive Bayes’ Rule. Let
me explain how this works.

3 De Finetti’s Theorem

In what follows, I’ll pretend that the world is a sequence of coin flips. This is obviously incorrect, but
it helps to keep the mathematics (somewhat) simple.

So assume we have a rational credence Cr over sequences of outcomes. The sequences may have
any length. Assume, further, that the credence assigned to a sequence only depends on the number
of Heads and Tails, not on their order. For example, 𝐻𝐻𝑇𝐻𝑇𝑇𝐻𝑇 and 𝑇𝐻𝐻𝐻𝑇𝑇𝐻𝑇 have the
same credence, because they have the same number of Heads and Tails. In this case, we say that the

2 This is not the Principal Principle of [Lewis 1980]. Lewis’s Principle assumes that chance is defined for arbitrary
propositions. Most probabilities in science arguably don’t satisfy this assumption.

3 On the frequency interpretation, each outcome in a finite sequence provides evidence about the others, even conditional
on a particular chance hypothesis. So (Ind) becomes untenable. The “Best Systems” interpretation of chance of [Lewis
1994] has the same problem. If we assume that the chance function itself treats the trials as independent, we also get a
violation of the Principal Principle. In the literature on the Best Systems account, this is known as the “undermining
problem”.
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credence is exchangeable.
In essence, de Finetti’s Theorem now states that our credence can be represented as a probability

function that

• is unsure about the chance 𝜃 on each trial,
• regards the trials as independent, and
• satisfies Bayes’ Rule.

To clarify the nature of this “representation”, I want to briefly sketch a proof of the Theorem.4

(The details won’t be important for what follows.)
Assume that 𝑥1, … , 𝑥𝑛 is a finite sequence of outcomes, drawn from a possibly longer “world” se-

quence 𝑥1, … , 𝑥𝑁 . We assume that Cr is exchangeable, and that the probability it assigns to 𝑥1, … , 𝑥𝑛
does not depend on 𝑁 : mere information about the size of the world sequence doesn’t reveal anything
about the initial outcomes.5 Choose a particular 𝑁 > 𝑛, and let 𝑅 be a variable for the ratio of heads
in 𝑥1, … , 𝑥𝑁 . By the law of total probability,

Cr(𝑥1, ...𝑥𝑛) = ∑
𝑟

Cr(𝑥1, ...𝑥𝑛 ∣ 𝑅 = 𝑟) Cr(𝑅 = 𝑟). (1)

By exchangeability, all sequences 𝑥1, … , 𝑥𝑁 with the same number of heads have the same probability.
This means that Cr(𝑥1, … , 𝑥𝑛 ∣ 𝑅 = 𝑟) equals the distribution one gets when drawing 𝑛 balls (without
replacement) from an urn with 𝑁 balls, 𝑟 of which are white and the others black. The larger 𝑁 is
compared to 𝑛, the more this distribution looks like the binomial distribution for drawing without
replacement. More precisely, if the sequence 𝑥1, … , 𝑥𝑛 contains #ℎ heads, and the “world” sequence
𝑥1, … , 𝑥𝑁 contains #𝐻 (= 𝑟𝑁) heads, then there are ( 𝑁

#𝐻) overall possibilities for 𝑥1, … , 𝑥𝑁 , and
( 𝑁−𝑛

#𝐻−#ℎ) possibilities whose initial segment is 𝑥1, … , 𝑥𝑛. So

Cr(𝑥1, … , 𝑥𝑛 ∣ 𝑅 = 𝑟) = ( 𝑁−𝑛
𝑟𝑁−#ℎ)
( 𝑁

𝑟𝑁)
. (2)

Putting (1) and (2) together, we have

Cr(𝑥1, ...𝑥𝑛) = ∑
𝑟

( 𝑁 − 𝑛
𝑟𝑁 − #ℎ)/( 𝑁

𝑟𝑁) Cr(𝑅 = 𝑟). (3)

Because Cr puts no upper bound to the size 𝑁 of the world, this holds for any 𝑁 > 𝑛. As we increase
𝑁 , the ratio 𝑅 converges (with probability 1) to a limit 𝜃; ( 𝑁−𝑛

𝑟𝑁−#ℎ)/( 𝑁
𝑟𝑁) converges to the binomial

𝜃#ℎ(1 − 𝜃)#𝑡; the sum becomes an integral, and Cr(𝑅 = 𝑟) turns into a (unique) probability density
𝜇 over 𝜃 ∈ [0, 1]. That is, there is a unique 𝜇 such that

Cr(𝑥1, ...𝑥𝑛) = ∫
1

0 𝜃#ℎ(1 − 𝜃)#𝑡 𝜇(𝑑𝜃). (FT)

4 My proof follows [Diaconis and Freedman 1980] rather than de Finetti, who assumes that Cr is defined over infinite
sequences.

5 That is, the marginals satisfy Kolmogorov’s consistency conditions.
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This is de Finetti’s Theorem.
In what sense does the right-hand side “represent” a probability that is unsure about the chance

and regards the tosses as independent? Well, 𝜇 is unsure about the chance parameter 𝜃. And 𝜃#ℎ(1−
𝜃)#𝑡 is the probability of the outcomes on the assumption that tosses are independent and that the
probability of heads on each toss is 𝜃.

De Finetti’s idea is all it means to have a credence over chances is to have a corresponding ex-
changeable credence over outcomes. The “credence over chances” implicit in Cr is given by the
(unique) density 𝜇 in (FT). Also implicit in Cr are credences about outcomes conditional on chance.
These are given by 𝜃#ℎ(1 − 𝜃)#𝑡 . If we abuse notation and write ‘Cr(𝜃)’ for the implicit credence
over chances, and ‘Cr(𝑥1, ...𝑥𝑛 ∣ 𝜃)’ for the implicit credence over outcomes given the chance, Bayes’
Theorem gives us an inverse credence ‘Cr(𝜃 ∣ 𝜔)’ over chances given outcomes. Specifically:

Cr(𝜃 ∣ 𝑥1, … , 𝑥𝑛) ∝ 𝜃ℎ ⋅ (1 − 𝜃)𝑡 ⋅ Cr(𝜃).

Bayes’ Rule!
On de Finetti’s interpretation, scientific reasoning, with its apparent commitment to objective

chance, can at most be accused of sloppy notation. It is mathematically sound and philosophically
innocent, with no real commitment to objective chance. As Diaconis and Skyrms [2017: p.123] put
it: “if we dispense with objective chance, nothing is lost. The mathematics of inductive reasoning
remains exactly the same.”

To summarize. Realist accounts of chance have trouble explaining the role of chance in scientific
reasoning. De Finetti’s projectivist re-interpretation explains this role as a mathematical consequence
of a certain symmetry (exchangeability) in rational credence functions.

4 Towards quasi-realism

We’ve seen how de Finetti’s re-interpretation of chance can vindicate “the mathematics of inductive
reasoning”. But physical probability doesn’t just figure in the mathematics of inductive reasoning.
We also find it, for example, in scientific laws. How should we understand these laws? Do radium-
227 atoms not have a half-life? Or is their half-life dependent on our credences, so that they might
have one half-life for you and another for me?

A strict de Finettian does not have beliefs about chance. ‘Cr(𝜃)’ is just sloppy notation, shorthand
for 𝜇(𝜃), where 𝜇 is the density in the de Finetti representation of Cr. Accordingly, a strict de
Finettian wouldn’t say that there is a chance of heads, or that radium atoms have a half-life. Their
credence function is only defined over occurrent events, and chance hypotheses are not definable in
terms of such events. Chance does not exist.

In its strict form, de Finetti’s gambit is a revolutionary form of error theory. It calls for a radical
revision of our attitudes. If this is what Diaconis and Skyrms have in mind, it is surely an exaggeration
to suggest that “nothing is lost”.

I want to explore a less revolutionary version of de Finetti’s gambit that allows for genuine beliefs
about chance. It treats some statements about chance as true and others as false, and vindicates the
idea that the chances do not depend on us. On this interpretation, the gambit approaches a kind
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of quasi-realism, in the sense of Blackburn [Blackburn 1993]. (Indeed, it is evidently related to
[Blackburn 1983].) The quasi-realist wants to explain how attitudes that appear committed to a certain
metaphysics can be understood in a way that doesn’t commit to that metaphysics.6

I’ll develop the quasi-realist account in stages.
The first stage is to accept ‘Cr(𝜃)’ as a correct shorthand for ‘𝜇(𝜃)’. Skyrms [1980; 1984] calls

this a pragmatic reduction of chance. Unlike a semantic reduction, a pragmatic reduction offers no
informative analysis of chance statements. Still, credences about chance are reduced to other aspects
of one’s belief state. If you are rational and regard a sequence of binary outcomes as exchangeable
and extendable, then the measure 𝜇 in de Finetti’s theorem represents your beliefs about chance.

In stage 2, we have to address a version of the Frege-Geach problem. The measure 𝜇 is only
defined over the chance parameter. It is not defined, say, for conjunctions of a chance hypothesis and
a hypothesis about outcomes. If you’re confident that a coin is biased towards heads, however, you
may also be confident that the coin is biased towards heads and there will be a heads among the
first 3 outcomes. How can we make sense of that?

The answer is simple. Remember that de Finetti’s representation gives us an implicit credence over
chance,

𝐶𝑟(𝜃) = 𝜇(𝜃),

as well as an implicit credence over outcomes conditional on chance,

𝐶𝑟(𝑥1, ...𝑥𝑛 ∣ 𝜃) = 𝜃#ℎ(1 − 𝜃)#𝑡 .

We can now define a joint probability over outcomes and chance hypotheses, mirroring the standard
rule of probability that Cr(𝐴 ∧ 𝐵) = Cr(𝐴) × Cr(𝐵 ∣ 𝐴):

𝐶𝑟(𝑥1, ...𝑥𝑛, 𝜃) = 𝐶𝑟(𝑥1, ...𝑥𝑛 ∣ 𝜃) × 𝐶𝑟(𝜃).

At this point, it is advisable to introduce a more perspicuous notation. I’ll use ‘Cr’ for the original
credence function that is only defined over outcomes, and ‘Cr∗’ for an extended credence function
that is defined over outcomes and chance hypotheses. Formally, if Cr is defined over an algebra
(Ω, 𝐹), then Cr* is defined over the product algebra (Ω × Θ,𝐹 × ℬ), where Θ is the space of chance
hypotheses and ℬ is the Borel algebra on [0,1]. We assume that Cr is exchangeable, and require that
for every sequence 𝑥1, … , 𝑥𝑛 and Borel set 𝐴 ⊆ [0, 1],

𝐶𝑟∗(𝑥1, … , 𝑥𝑛, 𝜃 ∈ 𝐴) = ∫𝐴 𝜃#ℎ(1 − 𝜃)#𝑡𝜇(𝑑𝜃).

This means that the extended credence is reducible to the original credence: once you fix Cr (and
exchangeability holds), Cr∗ is fixed as well. But while Cr is only defined over outcomes, Cr∗ is
defined for arbitrary Boolean combinations of outcomes and chance hypotheses.

(The idea might be familiar from research in AI. When reasoning about a given feature space,

6 In the limit, quasi-realists want to vindicate all realist attitudes and judgements, leading to the problem of “creeping
minimalism” [Dreier 2004]. I don’t think we should go that far. In particular, we should not try to vindicate the realist’s
implausible mysticism about our epistemic access to the chance facts.
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it can be useful to extend the space with extra parameters and perform reasoning in the extended
space. Scientific reasoning takes place in the extended space of Cr∗, but it is in principle reducible
to reasoning in the original space of Cr.)

This was stage 2. In stage 3, we turn to assertions about chance. So far, we’ve only talked about
credence. (This reflects the Bayesian orientation of de Finetti’s gambit. In the Bayesian picture,
rational agents are never sure about the chances.)

Since chance statements do not have a reductive analysis, the semantics of such statements must
involve an extra parameter: We can’t assign a truth-value to ‘𝐶ℎ(𝐻) = .5’ relative to a possible world,
which is just a sequence of outcomes. Instead, chance statements will be true or false relative to a
pair of a world and a complete specification of the chances.

Fortunately, we’ve already introduced that same parameter into the representation of beliefs. The
Cr∗ function is defined over a domain of pairs of outcomes and chance hypotheses. This allows for
a simple theory of language use: chance statements can express beliefs, much like statements about
outcomes. By saying that a coin is biased towards heads, you might express the attitude Cr∗(𝐶ℎ(𝐻) >
1/2) ≈ 1.

To flesh out this idea, we’d need a general theory of assertion and how it relates to credence. This
is a big topic that is largely independent of the present project. We might, for example, follow the
influential model of [Stalnaker 1978, 2014: ch.2], in which assertions function to update a common
ground of propositions that are commonly accepted by the participants of the conversation. Common
acceptance means that everyone accepts them, everyone accepts that everyone accepts them, and
so on. Accepting a proposition means treating it as certain – acting as if one gave it credence 1 (see
[Dinges 2024]). Traditionally, the propositions in the common ground are modelled as sets of worlds;
we would now model them as sets of world-chance pairs. The rest of the story can remain the same.

Under the hood, however, assertions about chance play a very different role from assertions about
outcomes. This becomes clear if we look at the un-extended credence Cr of speakers and hearers.
If your extended credence is sure that a coin is biased towards heads, your un-extended credence is
skewed towards worlds with more heads than tails (although it allows for the possibility of more tails
than heads), and this skew is insensitive to evidence about individual outcomes. By conveying that
the coin is biased towards heads, you would convey this resilient skew.

What about mixed statements that are partly about outcomes and partly about chance? Their se-
mantics poses no problem. Since we have the extra parameters both in the semantics and in the rep-
resentation of beliefs, we can handle not only Boolean “mixed” statements, but also attitude reports
and modals with occurrences of chance terms.

This was stage 3. I want to mention an optional fourth stage that might help to secure the intuitive
objectivity of chance.

To a large extent, our construction of Cr∗ already achieves this. Consider, for example, the follow-
ing statement:

(1) If we change our beliefs about chance, the chances change.

Is this true according to our extended credence function Cr∗? There is no reason to think that it
should. In the earlier toy construction, Cr∗ was only defined over pairs of outcomes and chances, and
we didn’t consider beliefs as part of the outcomes. In a more realistic model, the “outcomes” would
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comprise the entire world – the complete history of all occurrent events. This would presumably
include our beliefs. Now we can envisage possibilities in which our beliefs about chance change.
Does Cr∗ assume that these are possibilities where the chance itself changes? Surely not. This would
require a very strange underlying credence Cr Cr∗ may well be sure that the chance never changes at
all, and certainly not in response to our beliefs.

Similarly, consider (2):

(2) If our beliefs about chance were different, the chances would be different.

There is no reason to think that this has non-negligible credence in Cr∗. On the contrary, a plausible
rule for how we interpret counterfactuals about ordinary events is that we hold fixed the actual chances.
This semantics can easily be adopted in the present framework. It renders (2) straightforwardly false.

In sum, the extended credence function Cr∗ already rejects statements expressing a dependence of
chance on our beliefs. It similarly allows for the possibility that we can be wrong about the chances,
and that we may never know the true half-life of radium-227.

Still, one might feel that there is something disquietingly subjectivist or relativist about de Finetti’s
gambit. Imagine two scientists with radically different symmetries in their beliefs about outcomes.
As a consequence, they disagree about the chances, even after observing the same outcomes. We can
imagine that each of them is writing a textbook. According to scientist 𝐴, the half-life of radium-227
is 42 seconds. According to scientist 𝐵, it is 42 years. Each side regards the other as wrong. We, too,
may take sides, reflecting the symmetries in our own beliefs. But isn’t scientist 𝐵 objectively wrong?
It’s hard to say that de Finetti’s gambit makes the chances depend on our whims, but one can’t shake
the feeling that they do.

Bayesians have a standard response to worries about objectivity. Various “convergence theorems”
show that different priors tend to converge when faced with the same data. You’d have to start with
very wacky priors to end up with an extended posterior credence in which the half-life of radium-227
is probably 42 years. The fourth stage of the quasi-realist program is, in essence, to declare such
priors irrational.

More precisely, I want to suggest a version of the de Finetti gambit in which we switch from a
radical subjectivist interpretation of scientific reasoning (which de Finetti himself seemed to favour)
to a more objectivist interpretation. On the objectivist interpretation, there is a correct prior (or a
set of correct priors), selected by objective criteria. We might think of this prior Cr𝑜 as a kind of
idealization of the scientist’s actual prior credence Cr. The equality Cr = Cr𝑜 is a rational norm.

De Finetti’s theorem still applies to Cr𝑜. It allows us to define an extended probability Cr∗
𝑜 over

outcomes and chance hypotheses. Let’s assume that the scientist’s actual credence Cr is also defined
over the extended space of outcomes and chance hypotheses. (Why? Because people plainly do have
beliefs about chance.) The rational norm then becomes Cr = Cr∗

𝑜.
On the revised account, we no longer reduce actual credence about chance to credence about out-

comes. We don’t even assume that actual credence is probabilistically coherent. And we can allow
for confused agents whose credences about chance float freely from their credences about outcomes.

Bayes’ Rule and the Principal Principle now become norms. But they are not the mysterious norms
that they are on a fundamentalist account of chance. They don’t dictate how information about one
aspect of reality should affect opinions about an entirely separate aspect of reality. Rather, they are
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a consequence of the basic norm Cr = Cr∗
𝑜 together with the fact that credences about chance are

reducible for rational credence functions, in a way that guarantees Bayes’ Rule and the Principal
Principle.

5 Bounded rationality

I have assumed that (rational) credence functions over outcomes are exchangeable: invariant under
permutation. This specific assumption is not required for de Finetti’s gambit. De Finetti’s Theorem
can be generalized to credence functions that are merely “partially exchangeable”, and further to cre-
dence functions that are invariant under an abstract class of outcome transformations. (See [Diaconis
and Skyrms 2017: ch.7] for a summary.) But we seem to need some substantive symmetry in the
credence function over sequences to get the program off the ground. What justifies this assumption?

Objectivists might say that it follows from the requirement that a rational prior is indifferent be-
tween “similar” cases: sequences with the same outcome counts are “similar”. But is this true? Sup-
pose the first few outcomes in a sequence are HTHTHTHTHTHTHTHT. Isn’t this sequence more
likely to continue with H than with T? If so, a rational prior won’t be exchangeable.7

Intuitively, if we don’t have any information about a sequence, we should divide our credence
between different hypothesis classes: one class models the outcomes as independent chance events,
another as following a deterministic pattern (like HTHTHTHT…), another models them as a Markov
chain in which the next outcome probabilistically depends on the previous outcome.

Such a credence function will have very few symmetries. As far as I can tell, none of the general-
izations of de Finetti’s Theorem would apply. I suppose we might try to find the required symmetries
in the credence function conditional on a particular hypothesis class, but it’s not clear to me how
the conditional symmetries we now require could be cashed out purely in terms of credences over
outcomes.8

Of course, this is merely a technical problem: the credence functions over outcomes that can be
represented in the way I suggested will have some, rather complicated, feature in common. The real
question is why we should believe that a scientist’s actual or idealized credence function should have
this feature. Assuming that there are no objective chances in the world, why should a rational
credence function be decomposable into a mixture of credence functions that appear to be unsure
about the chances?

I want to suggest a speculative addition to de Finetti’s gambit that might help answer this question.
Suppose a coin is tossed 50 times. There are 250 = 1,125,899,906,842,624 possible results. A

cognitively unlimited agent could store these one by one, in a database with 250 entries, each paired
with a (tiny) probability.9 For realistic agents, this approach is infeasible. It would not only requires
an excessive amount of memory, it would also make updates cumbersome and slow: it takes a lot of
time to change a quadrillion floating point records.

7 By exchangeability, HTHTHTHTHTHTHTHT and THTHTHTHTHTHTHTH are equally likely to continue with H.
8 One problem: if we want to identify hypothesis classes with sets of sequences, where does the alternating sequence

HTHTHTHTHTHTHTHT go? If it doesn’t go to the “independent chance event” class, the credences conditional on
that class won’t be exchangeable.

9 Because the probabilities must add up to 1, 250-1 records would actually be enough.
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How else could we store a probability measure over the 250 sequences? Well, we could represent
the outcomes as independent chance events. That is, we could store a distribution 𝜇 over a parameter
𝜃, and then compute the probability of any sequence as ∫1

0 𝜃#ℎ(1 − 𝜃)#𝑡𝜇(𝑑𝜃). If we choose 𝜇 from
the family of beta distributions, this only requires storing two parameters (quite an improvement over
1.1 quadrillion), and updating becomes almost trivial: after observing an outcome we simply have
to add 1 to one of the parameters. Unlike the previous approach, this method neatly generalizes to
sequences of arbitrary length.

If an agent uses this approach, their credences will be exchangeable. Exchangeability, I suggest,
may or may not be a norm of ideal rationality, but it naturally arises from bounded rationality.

I’ve argued above that even moderately rational agents should not have exchangeable credences. If
a sequence starts with an obvious pattern, one should suspect that the pattern continues. To allow
for this, we need a somewhat more complex representation. The agent’s credence might be stored
as a mixture of the above exchangeable credence and, say, a credence that’s uniform over a certain
class of deterministic patterns. Generalizing, the agent might divide their credence between different
hypothesis classes in the way I suggested above.

This kind of agent will have more subtle, conditional symmetries in their credences over outcomes.
We don’t need to worry about how these symmetries could be described. Nor do we need to worry
about deriving a generalized de Finetti-style representation from the symmetries. We already know
that the agent’s credence is representable as a mixture of chance hypotheses because we’ve stipu-
lated that that’s how it is stored! Beautiful as it may be, in this version of de Finetti’s gambit, the
mathematics of de Finetti’s theorem becomes irrelevant.

I’m not suggesting that our brain stores our beliefs in exactly the way I have described.10 More
plausibly, our brain uses some messy approximation to the described format. Judgements about
chance still involve an element of idealisation.

De Finetti’s original gambit makes a big deal out of a mere mathematical possibility: an exchange-
able credence is representable as a mixture of chance hypotheses. My revised gambit suggests that
this representation is (to some approximation) cognitively real. This might explain why robust real-
ism about chance is so attractive. In our internal model of the world, there really are special chance
facts that are only probabilistically related to outcomes. The objective reality of chance is an illusion,
created by the way our brain stores and updates information.

6 Outlook

De Finetti gambit is commonly presented as a number of mathematical theorems together with a
revolutionary philosophical comment: “[objective] probability does not exist!”. I’ve tried to explain
how the gambit can be developed into a philosophically more substantive, quasi-realist account of
chance.

Throughout, I have relied on the simplifying assumption that the world is a sequence of coin flips.

10 It obviously doesn’t because it does not assume that the world is a sequence of binary outcomes. That’s not the point
I want to make. The point is that our brains at best approximate a mixture of chance hypotheses over the more high-
dimensional space of real events.
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Dropping this assumption would lead to a much richer picture. The fuller picture would clarify the
connection between chance, projectibility, and resiliency, as discussed in [Skyrms 1980: Ch.IA],
[Skyrms 1984: ch.3], and [Skyrms 1994]. It would shed light on the obvious affinity between de
Finetti’s gambit and the “arbitrary function” approach to chance, discussed (for example) in [von
Plato 1983], [Strevens 2003], and [Myrvold 2016]. It would, I think, also help to understand causal
propensities in Bayesian networks (see [Pearl 2000: ch.7]) But all these points are largely independent
of the issues I have discussed.

One last point. If you are familiar with expressivist and quasi-realist accounts in other domains,
especially in ethics, you may be surprised by how smoothly the story worked for chance. We could
easily solve the Frege-Geach problem (compare e.g. [Woods 2017]). We did not require a revisionist
theory of assertion (compare e.g. [Cuneo 2006]). We had no problem with credence about chance
(compare e.g. [MacAskill et al. 2020: ch.7]), and we could immediately explain the apparent objec-
tivity of chance (compare e.g. [Gibbard 1990: ch.8]).

Why did the story work so smoothly? Because we started with credence. Metaethical expres-
sivists, by contrast, generally start with language and assertion, and deal with credence only as an
afterthought, if at all. A metaethical expressivism that follows the de Finettian path would start with
credences about morality. It would explain how our credences over an extended logical space with
an extra moral parameter are determined, perhaps from purely descriptive credences together with
more desire-like attitudes (as in [Robinson and Steele 2023] perhaps, but there are many alternatives).
Only then would it turn to the semantics and pragmatics of moral language. If I could give a piece of
advice to metaethical expressivism, it would be this: credence first!
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